Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 9 of 9 results
1.

Optogenetic Methods to Control Tissue Mechanics in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2541-5_13 Link to full text
Abstract: Optogenetics is a powerful technique that allows the control of protein function with high spatiotemporal precision using light. Here, we describe the application of this method to control tissue mechanics during Drosophila embryonic development. We detail optogenetic protocols to either increase or decrease cell contractility and analyze the interplay between cell-cell interaction, tissue geometry, and force transmission during gastrulation.
2.

Cell division in tissues enables macrophage infiltration.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
bioRxiv, 20 Apr 2021 DOI: 10.1101/2021.04.19.438995 Link to full text
Abstract: Migration of cells through diverse tissues is essential for development, immune response and cancer metastasis. To reach their destination, cells must overcome the resistance imposed by complex microenvironments, composed of neighboring cells and extracellular matrix (ECM). While migration through pores and tracks in ECM has been well studied, little is known about cellular traversal into confining cell-dense tissues. Here by combining quantitative live imaging with genetic and optogenetic perturbations we identify a crucial role for cell division during cell migration into tissues. We find that normal embryonic invasion by Drosophila macrophages between the ectoderm and mesoderm absolutely requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by Integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade. Decreasing or increasing the frequency of ectodermal division correspondingly either hinders or promotes macrophage invasion. Reducing the levels of focal adhesion components in the ectoderm allows macrophage entry even in the absence of division. Our study demonstrates the critical importance of division at the entry site to enable in vivo cell invasion by relieving the steric impediment caused by focal adhesions. We thus provide a new perspective on the regulation of cellular movement into tissues.
3.

βH-spectrin is required for ratcheting apical pulsatile constrictions during tissue invagination.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Developmental processes
EMBO Rep, 26 Jun 2020 DOI: 10.15252/embr.201949858 Link to full text
Abstract: Actomyosin-mediated apical constriction drives a wide range of morphogenetic processes. Activation of myosin-II initiates pulsatile cycles of apical constrictions followed by either relaxation or stabilization (ratcheting) of the apical surface. While relaxation leads to dissipation of contractile forces, ratcheting is critical for the generation of tissue-level tension and changes in tissue shape. How ratcheting is controlled at the molecular level is unknown. Here, we show that the actin crosslinker βH-spectrin is upregulated at the apical surface of invaginating mesodermal cells during Drosophila gastrulation. βH-spectrin forms a network of filaments which co-localize with medio-apical actomyosin fibers, in a process that depends on the mesoderm-transcription factor Twist and activation of Rho signaling. βH-spectrin knockdown results in non-ratcheted apical constrictions and inhibition of mesoderm invagination, recapitulating twist mutant embryos. βH-spectrin is thus a key regulator of apical ratcheting during tissue invagination, suggesting that actin cross-linking plays a critical role in this process.
4.

Using optogenetics to tackle systems-level questions of multicellular morphogenesis.

blue red Cryptochromes LOV domains Phytochromes Review
Curr Opin Cell Biol, 11 May 2020 DOI: 10.1016/j.ceb.2020.04.004 Link to full text
Abstract: Morphogenesis of multicellular systems is governed by precise spatiotemporal regulation of biochemical reactions and mechanical forces which together with environmental conditions determine the development of complex organisms. Current efforts in the field aim at decoding the system-level principles underlying the regulation of developmental processes. Toward this goal, optogenetics, the science of regulation of protein function with light, is emerging as a powerful new tool to quantitatively perturb protein function in vivo with unprecedented precision in space and time. In this review, we provide an overview of how optogenetics is helping to address system-level questions of multicellular morphogenesis and discuss future directions.
5.

Optogenetic inhibition of Delta reveals digital Notch signaling output during tissue differentiation.

blue CRY2/CIB1 CRY2olig D. melanogaster in vivo Signaling cascade control
EMBO Rep, 31 Oct 2019 DOI: 10.15252/embr.201947999 Link to full text
Abstract: Spatio-temporal regulation of signalling pathways plays a key role in generating diverse responses during the development of multicellular organisms. The role of signal dynamics in transferring signalling information in vivo is incompletely understood. Here we employ genome engineering in Drosophila melanogaster to generate a functional optogenetic allele of the Notch ligand Delta (opto-Delta), which replaces both copies of the endogenous wild type locus. Using clonal analysis, we show that optogenetic activation blocks Notch activation through cis-inhibition in signal-receiving cells. Signal perturbation in combination with quantitative analysis of a live transcriptional reporter of Notch pathway activity reveals differential tissue- and cell-scale regulatory modes. While at the tissue-level the duration of Notch signalling determines the probability with which a cellular response will occur, in individual cells Notch activation acts through a switch-like mechanism. Thus, time confers regulatory properties to Notch signalling that exhibit integrative digital behaviours during tissue differentiation.
6.

Principles and applications of optogenetics in developmental biology.

blue red Cryptochromes LOV domains Phytochromes Review
Development, 22 Oct 2019 DOI: 10.1242/dev.175067 Link to full text
Abstract: The development of multicellular organisms is controlled by highly dynamic molecular and cellular processes organized in spatially restricted patterns. Recent advances in optogenetics are allowing protein function to be controlled with the precision of a pulse of laser light in vivo, providing a powerful new tool to perturb developmental processes at a wide range of spatiotemporal scales. In this Primer, we describe the most commonly used optogenetic tools, their application in developmental biology and in the nascent field of synthetic morphogenesis.
7.

Cross-linker-mediated regulation of actin network organization controls tissue morphogenesis.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
J Cell Biol, 28 Jun 2019 DOI: 10.1083/jcb.201811127 Link to full text
Abstract: Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis.
8.

Self-Organized Nuclear Positioning Synchronizes the Cell Cycle in Drosophila Embryos.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Cell, 9 Apr 2019 DOI: 10.1016/j.cell.2019.03.007 Link to full text
Abstract: The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.
9.

Downregulation of basal myosin-II is required for cell shape changes and tissue invagination.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Developmental processes
EMBO J, 15 Nov 2018 DOI: 10.15252/embj.2018100170 Link to full text
Abstract: Tissue invagination drives embryo remodeling and assembly of internal organs during animal development. While the role of actomyosin-mediated apical constriction in initiating inward folding is well established, computational models suggest relaxation of the basal surface as an additional requirement. However, the lack of genetic mutations interfering specifically with basal relaxation has made it difficult to test its requirement during invagination so far. Here we use optogenetics to quantitatively control myosin-II levels at the basal surface of invaginating cells during Drosophila gastrulation. We show that while basal myosin-II is lost progressively during ventral furrow formation, optogenetics allows the maintenance of pre-invagination levels over time. Quantitative imaging demonstrates that optogenetic activation prior to tissue bending slows down cell elongation and blocks invagination. Activation after cell elongation and tissue bending has initiated inhibits cell shortening and folding of the furrow into a tube-like structure. Collectively, these data demonstrate the requirement of myosin-II polarization and basal relaxation throughout the entire invagination process.
Submit a new publication to our database